培训课时:3天
课程描述
计算机图像处理课程,旨在帮助从实战的角度对计算机视觉技术进行了全面的剖析,并结合实际案例分析和探讨计算机视觉技术的应用场景,给予计算机视觉技术培训相关从业人员进行指导和启迪;并且通过各个应用场景的实际经典项目案例,深入解读计算机视觉技术的图像处理技巧
培训收益:
掌握OpenCV的使用;
理解卷积神经网络;
掌握Tensorflow的使用;
掌握keras的使用;
通过各个应用场景的实际经典项目案例,深入解读计算机视觉技术的应用)
培训特色:
本次培训从实战的角度对计算机视觉技术进行了全面的剖析,并结合实际案例分析和探讨计算机视觉技术的应用场景,给计算机视觉技术相关从业人员以指导和启迪。
课程大纲:
第一天
OpenCV使用
1.安装opencv
2.图像处理基础
3.图像运算和转换
4.图像平滑处理
5.图像梯度
6.图像边缘检测
7.图像金字塔
8.人脸检测和识别
卷积神经网络介绍
1.感受野,权值共享
2.卷积计算
3.卷积的步长
4.池化
5.Padding
6.MNIST网络结构介绍
第二天
Tensorflow使用
1.深度学习框架介绍
2.Tensorflow安装
3.Tensorlfow基础知识:图,变量,fetch,feed
4.Tensorflow线性回归
5.Tensorflow非线性回归
6.Mnist数据集合Softmax讲解
7.使用BP神经网络搭建手写数字识别
8.交叉熵(cross-entropy)讲解和使用
9.过拟合,正则化,Dropout
10.各种优化器Optimizer
11.改进手写数字识别网络
12.卷积神经网络CNN的介绍
13.使用CNN解决手写数字识别
keras使用
1.实现线性回归
2.实现非线性回归
3.MNIST数据集以及Softmax介绍
4.MNIST分类程序
5.交叉熵的应用
6.Dropout应用
7.正则化应用
8.优化器介绍及应用
9.CNN应用于手写数字识别
10.cifar-10图片分类
11.模型的保存和载入
12.绘制网络结构
第三天
验证码识别项目
1.多任务学习介绍
2.验证码识别项目
目标检测项目
1.目标检测任务介绍
2.RCNN/Fast-RCNN/Faster-RCNN算法介绍
3.YOLO算法介绍
4.SSD算法介绍
5.目标检测项目实战
目标分割项目
1.目标分割任务介绍
2.全卷积网络
3.双线性上采样
4.特征金字塔
5.Mask RCNN算法介绍
6.目标分割项目实战
图像风格迁移项目
1.图像风格迁移介绍
2.图像风格迁移项目实战
GAN项目
1.生成式对抗网络GAN介绍
2.生成式对抗网络GAN项目实战